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Abstract

This paper investigates the role of inherent weak flaws in the formation of plastic zones in deforming solids to understand the development

of geological shear zones. Physical experiments were carried out on polymethylmethaacrylate (PMMA) models containing single and

multiple circular cylindrical flaws under compression, maintaining plane strain condition. Models with single flaws show development of

shear zones against a flaw in the form of conjugate sets with an average dihedral angle of 848 and oriented at an angle of 428 to the bulk

compression direction. The shear zones are generally tapered, with increasing width away from the flaw. In models with multiple flaws, shear

zones nucleated against individual flaws, which propagated and coalesced with one another, forming through-going, band-like shear zones

with inclination varying from 358 to 538 with the bulk compression direction. With an increase in flaw concentration, the through-going shear

zones defined persistent conjugate sets. We applied the plane theory of elasticity for numerical simulations of ductile shear zones under the

influence of a single circular weak flaw. The pattern of shear zones yielded from numerical runs grossly matches with those observed in

physical model experiments. Theoretical analysis demonstrates that the presence of a flaw promotes nucleation of shear zones at a bulk stress

below the yield strength of matrix. This critical stress is a non-linear function of the flaw–matrix competence contrast, and decreases

asymptotically with increasing competence contrast.

q 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Many rocks contain inherent flaws in the form of

inclusions, which perturb the strain field during defor-

mation. A number of experimental and theoretical models

have been applied to investigate the nature of strain

perturbation in inclusion–matrix rock systems, and devel-

opment of several geological structures, such as folialtion

drag, porphyroblast trails, porphyroclast tails etc. (Masuda

and Ando, 1988; Ildefonse and Mancktelow, 1993;

Passchier, 1994; Bjornerud and Zhang, 1995; Kenkmann

and Dresen, 1998; Jezek et al., 1999; Pennacchioni et al.,

2000; Ramsay and Lisle, 2000; Treagus and Lan, 2000;

Mandal et al., 2001). Apart from influencing the develop-

ment of the aforesaid geological structures, the presence of

any geometrical or mechanical imperfection within a rock

body can also aid nucleation of high-strain zones (Tvergaard

et al., 1981; Segall and Simpson, 1986). It has been shown

that solid materials deformed under critical stresses develop

high-strain zones in the form of plastic bands (Hill and

Hutchison, 1975; Cobbold, 1977; Anand and Spitzig, 1980;

Porier, 1980; Mandal et al., 1992; Mair et al., 2000), which

are comparable with ductile shear zones observed in

naturally deformed rocks. This is also evident from studies

based on real rocks and rock analogue models, which

demonstrate that mechanical heterogeneity in rock systems

can lead to strain localization in the form of shear zones

(Christiansen and Pollard, 1997; Grujic and Mancktelow,

1998; ten Grotenhuis et al., 2002). Recently, Mancktelow

(2002) has presented finite element models for the

development of conjugate shear zones in viscoelastic

inclusion–matrix systems. The models demonstrate the

influences of different physical factors, like power law

rheology, strain softening, effective viscosity contrast

between the inclusion and matrix, in the propagation

behaviour and thereby the geometry of shear zones.

This study is based on physical experiments using
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polymethylmethaacrylate (PMMA) models, and demon-

strates the controls of weak flaws in plastic failure of the

matrix material, leading to nucleation of shear zones. The

experiments were run on models containing single as well as

multiple flaws. The plane theory of elasticity is employed to

determine the stress field around a flaw in an elastic–plastic

material, and to simulate shear zones, imposing Von Mise’s

criterion for plastic failure in the neighbourhood of flaw.

The bulk stress required for nucleation of shear zones is

derived as a function of the competence contrast between

the matrix and flaw.

2. Analogue models

2.1. Experimental methods

We ran deformation experiments on PMMA models

There are several advantages in using PMMA for the present

study. The material behaves plastically under atmospheric

pressure and temperature conditions, and the onset of plastic

deformation is evident macroscopically from the stress–

strain curves (Fig. 1). The PMMA that we used is

transparent and can be studied under an ordinary optical

microscope in thin section. The polymer has a characteristic

optical property, which has been utilized in our study. It is

optically isotropic, but turns anisotropic as soon as it is

plastically strained (Bowden and Raha, 1970; Anand and

Spitzig, 1980). In addition, the birefringence increases with

increasing plastic strain, giving a scope for assessing

qualitatively the intensity of plastic strain by observing

the degree of optical anisotropy. This strain-dependent

optical property was used to study the localization of shear

zones in the neighbourhood of inherent flaws.

PMMA models were prepared in the following manner.

A number of plates of desired dimensions (6 cm £ 4 cm)

were cut out from a 1.1-cm-thick PMMA sheet, and the

plates were then stacked with their interfaces welded with a

strong adhesive to develop a single, thick block. In order to

induce weak perturbations in the model, the block was

drilled to make circular cylindrical holes, which were later

filled with epoxy, a material much weaker than PMMA. The

ratio of shear moduli of PMMA and epoxy is 9.21. The

lateral faces of the block were finally polished to gain an

exact dimension of the model required for placing it within

the deformation zig (Fig. 2).

Model deformation was run under a hydraulically driven

apparatus with arrangements for tracking the applied load

and the displacement in the course of progressive defor-

mation. The experiments were performed in plane strain,

with the no-strain direction along the axes of flaws (Fig. 2),

at strain rates in the order of 5 £ 1024 s21 and for a finite

shortening up to a maximum of 22%. Deformed models

were studied in both macro- and micro-scale. For macro-

scale observations, square grids were marked on the lateral

faces (perpendicular to flaw axis) of the model, and their

distortion patterns revealed localization of shear zones in

the neighbourhood of flaws. In order to study the deformed

model under an optical microscope we prepared a single

thin section from a slice of the model, cut transverse to the

flaw axis. However, under the optical microscope it was

difficult to take photographs of the overall dispositions of

shear zones around a flaw in a single snap. We thus

developed a special arrangement, which consisted of two

polarising plates within a cylindrical tube, being illuminated

from one side. The deformed specimen was placed within

Fig. 1. Stress–strain relation for polymethylmethaacrylate (PMMA)

obtained from deformation tests on homogeneous PMMA models. Fig. 2. Schematic sketch of experimental set-up for model deformation.

N. Mandal et al. / Journal of Structural Geology 26 (2004) 1391–14001392



the polarising plates. The latter were rotated to a mutually

crossed position. In this position the specimen became dark,

revealing the shear zones in the form of birefringence

domains. The overall patterns could be observed and

photographed at a glance.

2.2. Experimental results

2.2.1. Models with single flaws

We carried out a set of experiments on PMMA models

containing single flaws (Fig. 3a) During deformation, the

flaws were flattened into elliptical cross-sections. The

passive square grids in the neighbourhood of the flaws

were intensely distorted in locales resembling shear zones

(Fig. 4a). The strain distribution shows that the high-strain

zones localize preferentially near the tips of the flattened

flaws (Fig. 5), implying that the flaws act as the nucleation

site of shear zones. Optical studies also reveal that the weak

flaws acts as a site for nucleation of shear zones, showing

strong birefringence (Fig. 4b). The shear zones occur as

conjugate sets, radiating from the flaw. Individual shear

zones show wedge shaped geometry, with increasing width

away from the flaw (Fig. 4c). In order to express the shear

zone orientation we constructed central lines of tapered

shear zones, and measured their inclination. The dihedral

angle of shear zones, on average, is estimated as 848, where

individual shear zones make an angle of 428 to the bulk

compression direction. Their optically defined boundaries

are sharp near the flaw, which become more and more

diffuse away from the flaw. In addition, the intensity of

optical anisotropy tends to be progressively weak, indicat-

ing that the overall strain within a zone also decreases away

from the flaw (Fig. 4b), which is also reflected in the strain

distribution obtained from the deformed grids (Fig. 5). This

type of tapered geometry of shear zones is noticed in

numerical models presented in the next section.
Fig. 3. Initial PMMA models containing (a) single and (b) multiple circular

cylindrical flaws. Flaw axis is along the viewing direction. Scale bar: 1 cm.

Fig. 4. PMMA models deformed under vertical compression. (a) Distortion

of grids defining shear zones radiating from the flaw. Permanent bulk

shortening in the model was 12%. Scale bar: 1 cm. (b) Overall disposition

of shear zones (birefringence zones) in thin sections under cross-nicols.

Permanent bulk shortening in the model was 5%. Scale bar: 1 cm. (c)

Wedge shaped geometry of shear zones. Permanent bulk shortening in the

model was 21%. Note that the shear zones appear to terminate abruptly at

the plate boundary, as the photograph was taken after removing the lower

and upper polymer plates of the deformed model. Scale bar: 0.5 cm. The

three figures represent three different PMMA models.
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The shear zones propagated to a large extent, and met the

surface of the PMMA plate. Minor shear zones formed in

the locales where the flaw-controlled shear zones met the

surface of the model. These shear zones nucleated at the

surface, and propagated inside and narrowed down to

terminate in the central part of the models (Fig. 4c). These

subsidiary shear zones are oriented at angle of 358 to the

bulk compression direction, which is slightly less than that

of dominant shear zones.

2.2.2. Models with multiple flaws

We performed a number of experiments on PMMA

models containing multiple weak flaws (Fig. 3b). In contrast

to single flaw models, these models show shear zones,

nucleating against individual flaws, of diverse orientations,

with inclinations to the bulk compression varying in a wide

range (248–598). The shear zones coalesce with one another

while propagating away from the flaws, and form longer

through-going shear zones with an overall band-like

geometry (Fig. 6). The experiments show that the develop-

ment of shear zones is controlled by the distribution of

flaws. They form in such a fashion that they link two

neighbouring flaws, describing a maximum width at the

central distance between the two flaws (Fig. 6a). The

coalescence of two neighbouring shear zones appears to be

more effective when the flaws are aligned along a line with

orientation close to that of shear bands as observed in

models with single flaws. Shear zones connecting two flaws

do not form when the latter are aligned far away from this

orientation.

When the flaw concentration is low, the models

developed through-going shear zones non-uniformly, show-

ing an association with discrete shear zones. In terms of

orientation, however, the shear zones occur in conjugate

sets. In contrast, models containing flaws in relatively large

concentrations developed more persistent through-going

shear zones in conjugate sets (Fig. 6b). This is probably due

to the more effective coalescence of shear zones as a flaw

arrangement of favourable orientations is more available in

systems of densely distributed flaws. In multiple flaw

models the general trend of through-going shear zones

varies in the range from 358 to 538 with respect to the bulk

compression direction (Fig. 6b).

In these experiments the shear bands in places show

offsetting at the interfaces of two polymer plates. It appears

that some slip occurred locally along the plate interfaces,

resulting in offsetting of a shear band across the interface.

The slip probably developed at locales where the adhesive

material was not properly spread on the surface of the plate

during model preparation. This is a limitation in our

Fig. 5. Strain map around the flaw in deformed model shown in Fig. 4a. Numerical values corresponding to strain contours indicate the principal stretch.
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experimental modelling. Secondly, in multiple flaw models

tensile cracks formed parallel to the bulk compression

direction, which were preferentially located on either side of

flaws. Some cracks also developed at the model boundary.

These cracks appear to have developed at a later stage of

deformation, as they cut across sharply shear zones. In

places, the cracks show localisation of plastic strain at their

tips, which is evident from birefringence zones.

3. Theoretical model

3.1. Mathematical derivation

Experimental observations described above indicate that

a mechanically weak flaw induces plastic failure preferen-

tially in its neighbourhood, developing shear zones In order

to analyse this, we employ the plane theory of elasticity to

derive the perturbed stress field around a flaw, and then

simulate shear zones in the perturbed stress field by

imposing Von Mise’s yield criterion. Consider a circular

flaw of radius a in an infinitely extended elastic medium

with shear modulus mm. The material inside the flaw is also

assumed to be elastic, but of different shear modulus, say mi.

We again consider that the flaw is perfectly welded with the

matrix, and there is no slip at their interface during the

deformation. A Cartesian co-ordinate frame, xy is chosen at

the centre of the flaw with the x axis parallel to the direction

of bulk compression p (Fig. 7). The stress components at

any point in the neighbourhood of the flaw can be expressed

in terms of the polar co-ordinates as (Muskhelishvilli,

1953):

srr ¼ 2
p

2
12 g

a2

r2
þ 12 2b

a2

r2
2 3d

a4

r4

 !
cos2u

" #
ð1aÞ

suu ¼ 2
p

2
1þ g

a2

r2
2 12 3d

a4

r4

 !
cos2u

" #
ð1bÞ

sru ¼
p

2
1þ b

a2

r2
þ 3d

a4

r4

" #
sin2u ð1cÞ

b, g and d are constants. They are functions of the

rheological parameters and their expressions are as follows:

b ¼ 2
mm 2 mi

� �
mm þ mixm

; g ¼
mm xi 2 1
� �

2 mi xm 2 1
� �

2mi þ mm xi 2 1
� � ;

d ¼ 2
mm 2 mi

� �
mm þ mixm

ð2Þ

where

xm ¼
lm þ 3mm

lm þ mm

; xi ¼
li þ 3mi

li þ mi

ð3Þ

li and lm are the Lame’s constants for the flaw and matrix,

respectively. If the material inside the flaw is extremely

weak compared with the matrix, it can be treated as a hole,

and in that case mi ¼ 0 and it then follows that: b ¼ 2,

g ¼ 1, d ¼ 21. However, the values of these constants will

be different when mi is not zero. Now, the expressions of the

functions in Eq. (2) become simple if both the flaw and the

matrix are assumed to be incompressible, i.e. xm ¼ xi ¼ 1.

The constants b, g, and d are then:

b ¼ 2
R 2 1

R þ 1
; g ¼ 0;

d ¼ 2
R 2 1

R þ 1
; where R ¼ mm=mi

ð4Þ

In the following discussion we shall use the parameter R as a

measure of competence contrast between the matrix and

flaw.

The expressions of the stress functions (Eqs. (1a)–(1c))

can be rewritten into simple forms as:

srr ¼ 2
p

2
1þ 12 4K

a2

r2
þ 3K

a4

r4

 !
cos2u

" #
ð5aÞ

suu ¼ 2
p

2
12 1þ 3K

a4

r4

 !
cos2u

" #
ð5bÞ

Fig. 6. (a) Development of shear zones in PMMA models containing

multiple weak flaws in (a) low and (b) high concentrations. Permanent bulk

shortening in the model was 4 and 6% in (a) and (b), respectively. Scale bar:

0.5 cm.
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sru ¼
p

2
1þ 2K

a2

r2
2 3K

a4

r4

" #
sin2u ð5cÞ

where

K ¼
R 2 1

R þ 1
:

3.2. Numerical simulations of shear zones in single flaw

models

With the help of Eqs (5a)–(5c) we can now simulate

shear zones in the perturbed stress field around a flaw by

imposing a yield criterion. According to the Von Mise’s

criterion (Jaeger, 1969), the condition for plastic failure in

plane stress is as follows:

ðs1 2 s2Þ
2 þ s2

1 þ s2
2 ¼ 2s2

0 ð6Þ

s1 and s2 are the principal stresses, and s0 is the yield

strength of the matrix. Writing s1 and s2 in terms of srr, suu

and sru, and substituting the derived expressions in Eq. (6),

we have:

srr 2 suu

� �2
þ srrsuu þ 3s2

ru

� �
¼ s2

0 ð7Þ

The matrix yields plastically in the stress field around a flaw

(Eqs. (5a)–(5c)), where Eq. (7) is satisfied. It is evident that

the stress field around the flaw will depend on the

rheological contrast parameter R, and the bulk compressive

stress p, which in the foregoing analysis is expressed as s p,

normalised to the yield strength of matrix s0.

We performed sets of numerical simulations by varying

these two non-dimensional parameters: R and s p. The

simulations were made with the help of a computer

programme in Visual Basic, which involved the following

steps. (1) A Cartesian space was considered, as stated

earlier, and points at regular intervals were taken in a

Cartesian grid. (2) The Cartesian co-ordinates of the points

were then transformed into polar co-ordinates, as the theory

presented above is in polar co-ordinates. (3) The space was

subjected to a far-field stress p, the input of which in the

computation was given by a value normalized to the yield

strength of the matrix, chosen as an arbitrary number. (4)

Using Eqs. (5a)–(5c) the stress components were deter-

mined and put in the left hand side of Eq. (7). (5) Finally, a

stress factor (SF) was determined considering the ratio of the

values of the left- and right-side expressions in Eq. (7). (6)

Points with SF . 1 were plotted in the chosen space to

simulate plastic zones in the numerical model.

A set of numerical models is presented, which were run

by increasing the applied stress s p in successive steps. Fig.

8 shows the geometry of shear zones obtained at different

bulk stresses. It was found that shear zones are not

perceptible in the model till s p reaches a threshold value.

For s p exceeding this value, the locales allowing plastic

failure define small wedge-shaped zones located at the tips

of the flattened flaws (Fig. 8). Within these regions the

maximum stresses occur in circular domains, suggesting

dominant plastic deformation localising in small domains at

the tips of the flaw. At higher given bulk stress the plastic

zones are obtained in the form of two conjugate tongues

oriented at a low angle (208) to the bulk compression

direction and with a dihedral angle of 408. When s p was

increased to 0.9, the two tongues increase in area, defining

elliptical shear zones in conjugate sets. They make higher

Fig. 7. Consideration of Cartesian co-ordinate system and presentation of stress components in polar co-ordinates. p is the far-field stress.
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inclinations, about 468 to the bulk compression direction.

With a further increase in s p, the plastic zones define

elliptical zones with larger length to thickness ratios, and

thereby give rise to the geometry of shear zones, as observed

in physical experiments (Fig. 4b). The plastic zones show

little variation in their orientations with further increase in

bulk stress.

The principal findings from numerical simulations are:

(1) weak flaws act as sites for nucleation of shear zones, (2)

the zones in its rudimentary stage occur at a low angle to the

bulk compression direction, but the angle increases with

increase in the applied stress, and finally assumes a stable

value, (3) the shear zones are typically tapered in geometry.

3.3. Controls of flaw–matrix competence contrast

We ran a set of numerical experiments by varying the

competence contrast parameter R, keeping the applied stress

s p constant The experiments reveal that a flaw does not

induce plastic failure in its neighbourhood unless R attains a

threshold value. We determined the threshold values of R

for different applied stresses, and defined the conditions for

plastic failure in the s p–R space.

The bulk stress required for nucleation of shear zones

decreases nonlinearly with increasing shear modulus ratio

between the matrix and flaw (Fig. 9). The decrease occurs

steeply at low values of the ratio, whereas the stress varies

gently at larger values of the ratio, and tends to assume an

asymptotic value (about 0.5) when the ratio is very large

(greater than 10). The calculation implies that a system

containing mechanical flaws develops shear zones through

plastic failure at a bulk stress less than the yield strength of

the matrix. However, the stress must be at least half the yield

strength, even if the flaw is extremely mechanically weak,

being comparable with a hole in the system.

Another set of simulations was performed to study the

orientation of shear zones as a function of R. The

experiments reveal that the shear zones do not show any

significant change in their orientation with increasing

competence contrast (Fig. 10).

4. Discussion

Field observations suggest that rocks contain flaws, such

as melt pockets, lenticular veins, isolated sericite bodies,

which are weaker than the matrix and may be potential sites

for nucleation of ductile shear zones (Grujic and Manckte-

low, 1998). The development of flaw controlled shear zones

has been demonstrated in finite element models based on

elasto-viscous rheology (Mancktelow, 2002). In this study

we have attempted to test in physical experiments how weak

flaws in a system can actually control the formation of shear

Fig. 8. Numerical simulations of shear zones around a mechanical flaw

under different far-field stresses (s p), normalised to the yield strength of the

matrix. Black to light grey shades successively represents the values of

stress factor SF greater than 2, 1.5, 1.25, and 1, respectively. See text for the

expression of SF. R ¼ 15.

Fig. 9. Variation of the critical far-field stress required for nucleation of

shear zones with the competence contrast between flaw and matrix.

N. Mandal et al. / Journal of Structural Geology 26 (2004) 1391–1400 1397



zones. The experimental results grossly match with the

earlier findings, although our experimental models are based

on elastic–plastic rheology.

We have applied the plane theory of elasticity in

numerical simulations of shear zones around a circular

flaw of contrasting shear modulus. This application is

convenient as it involves simple, analytical solutions for the

stress perturbation due to a circular flaw. The shear zone

patterns in numerical models conform to those observed in

physical experiments.

In physical experiments a single flaw in the model

nucleate shear zones in the form of conjugate sets, where the

individual zones are characteristically tapered in geometry,

widening away from the flaw. The geometry is consistent

with that obtained from numerical simulations based on the

plane theory of elasticity. It thus appears that shear zones

develop by plastic failure of the matrix material in response

to the perturbed stress field in the neighbourhood of the

weak flaw. In physical experiments they make an average

angle of 428 to the bulk compression. However, the shear

zones in numerical models are inclined at slightly higher

angles. This difference is probably due to some differences

in factors developed in physical and numerical experiments.

We have modelled weak zone controlled shear zones

considering the material isotropic before and after the

plastic failure. On the contrary, the material might have

acted mechanically anisotropic in the course of plastic

deformation. Secondly, numerical simulations were devel-

oped considering the weak flaws ideally circular in cross-

section, which may not be exactly so in physical

experiments. There might be some departures in weak

zone geometry from the theoretical consideration. The third

probable reason may be attributed to the mechanical

condition at the flaw–matrix interface. However, at this

stage we cannot provide any concrete explanation for this

small difference in shear zone orientations obtained from

the theory and physical experiments.

Numerical experiments indicate that weak flaws can

induce nucleation of shear zones only when the flaw–matrix

competence contrast exceeds a threshold value. In geologi-

cal settings weak zones may develop in rocks due to

processes like partial melting or local fluid controlled

softening. However, they will not induce localization of

shear zones unless they become sufficiently softer than the

bulk material. The system will deform developing a

heterogeneous strain field around the weak zone, but not

in the form of shear zones, as demonstrated in earlier

(Mancktelow, 2002) and present models.

We have shown the conditions for nucleation of weak

zone controlled shear zones in relation to two physical

factors: (1) shear modulus ratio of flaw and matrix and (2)

the ratio of applied bulk stress and the yield strength of

matrix. The theoretical formulation is based on a single flaw

system, considering the flaw occurring in an infinite elastic

medium. The theoretical results are applicable to rocks

containing flaws in low volume concentrations. In the

approach flaw size does not appear to be a parameter, as the

matrix is assumed to be of infinite extent. Recent studies

show that flaws occurring in large volume concentrations

mechanically may interact with one another, and thereby

develop stress fields in the neighbourhood different from

that of single, non-interacting flaws (Mandal et al., 2003;

Samanta et al., 2003). The effect of such mutual interaction

probably results in a variation of shear zone orientations in

multiple flaw models, as noticed in our physical models. It

thus appears that in multiple flaw systems the flaw size will

be an additional physical parameter in controlling shear

zone nucleation, as it determines the matrix/flaw volume

ratio. In that case, the bulk stress required for nucleation of

shear zones would be different from that derived from the

theory based on single flaw systems presented in this paper.

Some of the features observed in physical experiments

have developed essentially due to our experimental

Fig. 10. Simulation of shear zones in numerical models for different values

of the competence contrast parameter R under a constant far-field stress

(s p ¼ 0.93). Grey shades are used as in Fig. 8.
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conditions. For example, minor shear zones formed where

the flaw-controlled shear zones propagated to a large extent

and met the model boundary. These minor shear zones

would not have formed if the model were considered to be

of infinite extent, as in the case of numerical models.

However, this type of situation may occur in layered rock

systems, where the layer interface can be potential locales

for nucleation of subsidiary shear zones.

In multiple flaw models we induced flaws randomly in

the model so that the shear zones would not grow tracking

the initial flaw arrangement. However, it was observed in

deformed models that shear zones nucleating at individual

flaws coalesce along a preferential direction forming longer

shear zones. Statistically, random flaws are likely to form

rows of random orientations. Our experiments suggest that

the coalescence of shear zones will be effective along rows

of flaws of particular orientation, giving rise to shear zones

showing preferred orientation with the compression direc-

tion, as often observed in naturally deformed rocks and

numerical models (Mancktelow, 2002). Shear zone orien-

tations are likely to show some variations maintaining a

statistically defined dominant direction. Further studies are

required to investigate how much the variation of orien-

tation is sensitive to the initial concentration of flaws in the

system.

5. Conclusions

The principal outcomes of our study are concluded along

the following points:

1. Physical experiments on elastic–plastic models confirm

earlier findings that weak flaws in rock systems can

trigger nucleation of shear zones. Single flaws develop

shear zones with the length dimension much larger than

the flaw dimension. Thus, the presence of a mechanical

flaw even incipient in size can lead to formation of strain

localization in the form of shear zones.

2. In multiple flaw systems, minor shear zones around

individual flaws coalesce with one another forming

longer, through-going shear zones. The process of

coalescence is more effective for flaws forming an

array of favourable orientations. The through-going shear

zones develop in well-defined conjugate sets when the

flaw concentration is relatively high.

3. Numerical models based on the plane theory of elasticity

show development of shear zones in a pattern resembling

that observed in the physical experiments. It appears that

shear zones can form through plastic failure of the matrix

under the heterogeneous stress field around a weak

mechanical flaw. This can happen under bulk stresses

below the yield strength of the system considered to be

homogeneous.

4. The bulk stress required for nucleation of shear zones

decreases non-linearly with increasing matrix/flaw

competence contrast, and tends to assume an asymptotic

value when the contrast is very large. The calculation

suggests that the bulk stress must be at least half the yield

strength of the matrix for the nucleation of shear zones

around a weak flaw, comparable with a hole.
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Appendix A

Numerical simulations presented in Section 3.2 involve

functions describing the displacement in the matrix for a

given bulk compression. Considering the matrix to be

incompressible, the displacement at a point in the

neighbourhood of a flaw can be expressed in terms of

complex functions as:

2mðu þ ivÞ ¼ wðzÞ2 zw0ðzÞ2 cðzÞ ðA1Þ

where u and v are the displacement components along the x

and y co-ordinate axes respectively, and wðzÞ and cðzÞ are

complex functions, and the prime and bar represent the first

derivative and conjugate of the functions, respectively

(Muskhelishvilli, 1953). For the present case, their

expressions follow:

wðzÞ ¼
p

4
z þ

bR2

z

 !
ðA2aÞ

cðzÞ ¼ 2
p

2
z þ

gR2z

z
þ

dR4

z3

 !
ðA2bÞ

Differentiating Eq. (A2a), we have:

w0ðzÞ ¼
p

4
12

bR2

z2

 !
ðA3Þ

Replacing z ¼ reiu in Eqs. (A2a), (A2b) and (A3), and

substituting their derivative expressions in Eq. (A1) and
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finally separating the real and imaginary parts, we get:

u ¼
p

8rm

"
bR2

 
2cos3u2 sin2usinu

!

þ 2cosu

 
r2 þ gR2

!
þ

2dR4

r2
cos3u

# ðA4aÞ

v ¼
p

8rm

"
2 bR2

 
2sin3u2 sin2ucosu

!

2 2sinu

 
r2 2 gR2

!
þ

2dR4

r2
sin3u

# ðA4bÞ

After putting the values of the constants b, g and d

(Eq. (4)), the above equations simplify as:

u ¼
p

8rm

"
2KR2

 
2cos3u2 sin2usinu

!

þ 2r2cosuþ
2KR4

r2
cos3u

# ðA5aÞ

v ¼
p

8rm

"
2 2KR2

 
2sin3u2 sin2ucosu

!

2 2r2sinu2
2KR4

r2
sin3u

# ðA5bÞ
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